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I N T R O D U C T I O N  

The structure and properties of a polymer near a surface 
have received much attention in recent years 1-21. The 
influence of microscopic structure on both adhesion and 
friction of polymers 1, the effect of polymer adsorption 
on the stabilization of colloidal systems 2 as well as the 
influence of conformation and dynamics of hydrocarbon 
tails of phospholipids on the properties and structure of 
lipid bilayers a '4 are typical examples of objects of interest. 

Computer  modelling methods are widely applied in 
theoretical investigations on this subject. Models of a 
polymer film in contact with vacuum s, polymer on a 
liquid-liquid interface 9'1° or polymer on a liquid-solid 
interfaceT'l 1,15 have been considered. 

The problem of the dimensions and shape of a coil 
formed by an isolated polymer chain attached to a wall 
seems to be a basis for considerations of the properties 
of the polymer near an interface. This model, as in the 
case of a polymer chain in dilute solution 22'2a, allows us 
to omit some complications relevant to chain-chain 
interactions. 

Gut tman et al. 16 have investigated the properties of 
model chains attached to a wall. The simulation results 
have confirmed the assumption that for large N the 
mean-square end-to-end separation (R 2) is proportional 
to N 2v, like it is for unconfined chains. For  model chains 
constrained by a tetrahedral lattice in the cited work 16, 
they have found 1.19 < 2v < 1.22. For  comparison, Kremer, 
Baumgartner and Binder 24 for a free chain model on a 
tetrahedral lattice in similar conditions have given the 
value v = 0.59. The convergence of both values is evident 
and may attest to the analogy between the properties of 
the coils formed by both attached and free chains. 

In the paper of Eisenriegler, Kremer and Binder 12, 
which concerns adsorption of a chain on an interface, we 
also can find a valuation of the dimensions of the coils 
formed by chains terminally attached to an inert wall. 
In the terminology of that work, this corresponds to 
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temperature T = o o .  In other words, the energy of 
adsorption is equal to zero. The results have been 
obtained by the Monte Carlo (MC) method for tetra- 
hedral lattice chains of length N ~< 100. The dependence 
of the mean-square radius of gyration, defined by: 

- - -  ~ (ri-r~) 2 (1) 
( R E ( N ) )  ( N + I )  2 ,=1j=i+1 

on the chain length N has been calculated. This 
dependence has the form: 

( R 2 ( N ) )  ~ N 1.22 + 0.04 (2) 

Kremer, Baumgartner and Binder 24 for a similar chain 
on a tetrahedral lattice have found: 

( R g ( N )  ) ,,, ( R E ( N ) )  ~ N 2. (3) 

where v = 0.59. Kolinski, Skolnick and Yaris 25 for longer 
(up to N = 800) athermal self-avoiding walks confined to 
a tetrahedral lattice have obtained 2v = 1.186+ 0.004, 

These facts may be used as additional confirmation of 
the supposition that the properties of free chains under 
good solvent conditions are similar to those anchored to 
a wall. 

The structure of an isolated polymer coil close to a 
rigid wall has also been investigated by Cosgrove 11'13 
He has used self-consistent field theory 26'27 to find 
segment density distributions near the walP 1. The plots 
of the segment density functions obtained by him for 
good solvent conditions without adsorption (e~ = 0) had 
a distinct maximum near the wall. 

The shape of the segment density distribution functions 
has been confirmed in experimental studies. Results of 
small-angle neutron scattering (SANS) studies for poly- 
styrene chains terminally attached on silica in carbon 
tetrachloride 11 as well as for poly(ethylene oxide) at the 
polystyrene/water interface 14'15 are good examples. 

The problem of the dimensions and structure of a coil 
formed by a polymer chain anchored to a rigid wall has 
been considered in Croxton's work as well 17--21. Relatively 
short, freely jointed chains (up to N = 2 0 )  have been 
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examined there. Results of MC simulations ts and esti- 
mations by the 'iterative convolution' (IC) ~7 method 
show that equation (3) is asymptotically valid for the 
chains considered. The value of exponent v=0.6 was 
obtained. 

The last findings lead to the conclusion that, under 
athermal conditions (X = 0 in Flory-Huggins notation2S), 
the influence of a geometrical constraint (an inert wall) 
on the excluded-volume effect of anchored polymer 
chains is not too big. This is a confirmation of the 
earlier statement of Tanaka 29. In 1977 he worked out, 
in the framework of first-order perturbation theory, an 
equation for the coefficient of volume expansion, ~, for 
chains anchored to a wall (tails): 

~2 = 1 + 1.26z + - .  • (4) 

where z is the excluded-volume parameter (defined e.g. 
in ref. 23). 

A similar equation for a spatially unrestricted chain 
has the form: 

a 2 = l + ) z + . - .  (5) 

One can see that in the above conditions the presence 
of the wall changes the coefficient a only a little even for 
large values of z (order of 10). Napper 2 has been of the 
opinion that this small influence results from great 
expansion of the tails in the direction perpendicular to 
the wall. This fact reduces the possibility of realization 
of the excluded-volume effect. 

Data published by Croxton ls-21 confirmed the 
assumption. Calculations by the IC method and MC 
simulation, for terminally attached hard-sphere sequences 
N ~<24 segments near a wall, have allowed us to note 
that the segment concentration in the range of z = R F has 
a value about half of the maximum and in athermal 
conditions drops out at low speed. 

There is a question whether the analogy between the 
behaviour of the tails and the free chains found for 
athermal conditions is true for a poor solvent range (close 
to the theta (0) point defined e.g. in refs. 23-25). 

The results of the MC simulation of 20-segment tails 
constrained to a tetrahedral lattice 3° allowed us to find 
some similarities, but for a low temperature, where the 
excluded-volume effect is increasing, one can observe 
some distinct differences in properties. 

In this work we have investigated chains (up to N = 60) 
confined to the half-space. We have carried out the 
analysis of the dependence of the coil dimensions on the 
chain length, for temperatures close to the theta point. 

the mean force potential, described by the equation: 

i r'i=O'i#J 
V(rij ) = rij = l, [i--j[ # 1 (6) 

l'ij > l 
where r~j is the distance between ith and jth segments, I 
is the model bound length and e~ is an interaction 
parameter. 

T h e  configurational energy of the system has been 
counted as the sum of the binary interactions between 
segments: 

E e= v 1 
- ~ i j = ~ ,  ~ vii (7) 

kT kT ~¢j , ~#j 

where vii is the number of contacts between beads and 
T* =- kT/~ is the reduced temperature of the system. 

The MC box, with periodic boundary conditions 31'32 
on the lateral walls, was assumed sufficiently large in 
order to make chain-chain contacts marginally probable. 
The wall, where the model chain was anchored, is 
impenetrable to polymer (the hard-wall potential). 

The dynamics of the model macromolecule is simulated 
by the 'kink-jump' method 33,34. The conformation of the 
model chain was changed by two-bead 24 and three- 
bead 35 jumps (Figure 1). The method allows us to 
simulate the behaviour of the lattice chain near the 0 
point for free chains z4'25'31'36'37. Our previous work 3° 
has confirmed the applicability of this method for short 
tails. 

Method of simulation 
In order to account for polymer-solvent interaction in 

the model chain, we use an 'importance sampling' 
method. This method was described e.g. in chapter 1 of 
the work edited by Binder 3z. It is extensively used for 
modelling of polymer systems at temperature below the 
0 point (e.g. refs. 24 and 32). The probability of change 
of the conformation from xi to xj depends, in this method, 
on change of conformational energy and is described 

b a 

DESCRIPTION OF THE MODEL AND 
SIMULATION METHOD 

Description of the model 
A detailed description of the model can be found in 

our previous work 3°. Here we give only a brief summary 
for the reader's convenience. The model consists of one 
chain placed in an MC box. It is attached, by one end, 
to a wall of the MC box. The investigated macro- 
molecules, composed of N=16, 20, 30, 40 and 60 
segments, are self-avoiding walk (SAW) type chains 
restricted to a tetrahedral lattice (details can be found 
elsewhere e.g. ref. 12). All lattice points unoccupied by 
polymer segments were considered as solvent molecules. 

The polymer-polymer interaction was simulated by 

) d . . . . .  

C 

Figure 1 Elementary conformational jumps of polymer chain restricted 
to the tetrahedral lattice: (a) one-bead motion of end units; (b) two-bead 
motion of end units; (c) two-bead jump of G -+ ~ G ~ type; (d) three-bead 
jump 
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Figure 2 
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Monte  Carlo box with a tail in expanded conformation for 

Figure 3 Polymer chain anchored to a wall after relaxation in the 
athermal condition, for n = 60 

4.0 is presented in Figure 5. The time step of the plot 
At = 1 corresponds to 10N = 600 trial modifications of 
the conformation of the chain. 

In the 'kink-jump' model one can observe a tendency 
of the conformational space to divide into some ergodic 
subclasses 36. When the modelled system enters in one of 
the subclasses, it has a very small probability of leaving 
this area. These 'forbidden configurations', in agreement 
with equation (8), limit the freedom of movement. 
Averages in this case are counted not over the whole 
configurational space but over this selected subclass. To 
avoid errors resulting from the described occurrence, we 
used additionally counting of the averages from some (at 
least five) independent simulations for a given set of data. 

From 106 to 107 elementary trial conformations for 
every point of measurement have been simulated. The 
efficiency of the simulation went down very fast with the 
increasing modulus of the interaction constant, e,. We 
can see this in the plot of conformational energy against 
time. The efficiency was estimated there as the number 
of accepted changes of the chain configuration. However, 
in the investigated range of temperature (T* >/0.8) the 
method seems to be productive. This means that the time 
between configurational jumps is very small in comparison 
with the time of the simulation. 

RESULTS AND DISCUSSION 

Dimension of the coil 
Figure 6 shows the reduced mean-squared end-to-end 

distances (R2)/NI 2 (where 12 is the square of the bond 

by the equation32: 

{~xp(-AE,j/kT) for AE,j> 0 
P(Xi~XJ)= for AEij~<0 (8) 

where AE o. is the difference of the conformational energy 
between conformation x / a n d  xj. 

The simulation process has been based on generating 
random paths in the space of states with probability of 
the transition as described above. The mean value of the 
parameter A is described by the arithmetic average32: 

~=1 ~, A(x,) (9) 
A ' / i =  1 

where M is the number of steps of the random path 
(number of simulated conformations). 

At the beginning of the simulation, the chain has been 
put in the MC box in an expanded conformation (Figure 
2). In the next stage the chain, through the changes 
described above, has passed into the equilibrium con- 
formation. The process has been conducted under 
athermal conditions (i.e. e~=0) to speed it up. The 
examined value of e~ has been set up after relaxation 
(Figure 3) and the system has been equilibrated at 
adequate temperature. Both processes required ,,- N x 104 
trial modifications of the model system. The equilibrium 
state obtained at a given temperature (Figure 4) was the 
starting point for the main stage of the simulation. The 
transition to the equilibrium conformation has been 
detected by observation of the conformational energy of 
the system against time. As an example, an initial 
fragment of the E~(t) plot for N = 60 and T* = 1.0 and 

Figure 4 Polymer chain anchored to a wall after relaxation at reduced 
temperature T* = 1.0, for N=60 
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T-t .0 

I, ,T=I.0 

f 
Figure 5 Plot of the conformational energy of the model chains for 
N=60 as a function of time of the simulation 
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Figure 6 Reduced mean-squared end-to-end distance vs. number  of 
segments of the model chain: (A)  T* =4.0;  (O)  T* =2.0;  ( I )  T* = 1.5; 
([])  T * = I . 0 ;  (O)  T * = 0 . 8  
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Figure 7 Reduced mean-squared radius of gyration vs. number  of 
segments of the model chain. Symbols as in Figure 6. The dotted curve 
represents values obtained by extrapolation of the data to the 
temperature T* = oQ 

length in a tetrahedral lattice) vs. number of segments in 
the model chain, N. All the parameters are measured in 
the reduced temperatures (defined above, in equation (7)) 
T* =4.0, 2.0, 1.5, 1.0 and 0.8. 

Figure 7 shows a similar plot for the reduced mean- 
squared radius of gyration 6(R2)/Nl 2. As we can see on 
both of the figures, flat regions exist between temperature 
T * =  2.0 and T * =  1.5. These regions, in agreement with 
Kremer, Baumgartner and Binder 24, define the 0 region. 
In this case, the 0 region is understood as the region 
where a chain anchored to the wall (tail) has properties 
close to the properties of the tail without polymer- 
polymer interactions. The (R2)o and (R2)o fulfil relations: 

(R2)°"2  (10) 
Nl 2 

and 

(R2)°"~z (11) 
NI 2 -~  

Values of (R~)o/Nl 2 for single random walk without 
excluded volume can be found e.g. in the work of Livne 
and Meirovich 38. 

The broken curves in Figures 6 and 7 represent the 
linear least-squares fit of the data with adjustable 
parameters A, B, 2v~ and 2v~ in equations: 

ln(R~) = ln  A+2v R In N (12) 

and 

ln(R 2)  = ln  B+2vG In N (13) 

The results, with the standard errors and correlation 
coefficients, are given in Tables I and 2. The values of 
(R 2)  for T * =  ~ have been obtained by extrapolation 
of the data. The value of 2v in these conditions (1.170+ 
0.015) is in good agreement with the data of Kolinski, 
Skolnick and Yaris 2s. For long, unrestricted chains they 
have obtained 2v = 1.186 _ 0.004. This convergence may 
be understood as the test of the used algorithm. 

Anisotropy of the coil 
In the case of tails, anisotropy results from the presence 

of the surface. We can distinguish the parallel and 
perpendicular parts of the mean-squared end-to-end 
distance12, defined as: 

(R2)II =((xl--xs)2 +(yl-yN) 2) (14) 

-zN)2) (15) 
where xi, Yi, zl are the Cartesian coordinates of the ith 
bead. 

Similarly, the parallel component of the mean-square 
radius of gyration can be defined as: 

( R 2 ) I I - = - ( i = ~  (X--XCM)2+(y--YcM) 2) (16) 

where XcM and Ycu are the centre-of-mass coordinates. 
Plots of the reduced values of the defined quantities 

are given in Figures 8, 9 and 10. The broken curves are 
obtained similarly as in the preceding paragraph. The 
values of the fitted quantities are given in Tables 3 to 5. 
It is evident, from the presented data, that a 0 transition 
occurs for both parallel components close to T* =2.0. 
This value is qualitatively consistent with the theta 
temperature obtained by Kremer, Baumgartner and 
Binder 24 for free chains. For unrestricted SAWs they 
have obtained kO/G = 2.25 ___ 0.05; Kolinski, Skolnick and 
Yaris 2s for SAWs up to N = 800 have given kO/G = 2.12 _ 
0.02. This convergence may confirm the supposition that 

T a b l e  1 The results of the linear least-squares fit of In((R2)/NI 2) (see 
text for further details) 

T* 2v In A Corr. coeff. 

4.0 1.131 +0.045 1.640+0.150 0.9976 
2.0 1.114 + 0.015 1.570 +_. 0.050 0.9997 
1.5 0.930 4- 0.030 2.038 4- 0.100 0.9885 
1.0 0.877 +__ 0.077 1.998 + 0.260 0.9885 
0.8 0.782 + 0.115 2.059 ___ 0.389 0.9692 

2 2 Table 2 The results of the linear least-squares fit ofln((RG)/Nl ) (see 
text for further details) 

T* 2v In B Corr. coeff. 

1.170 4- 0.015 - 0.379 4- 0.052 0.9998 
4.0 1.113 ___ 0.026 - 0.257 ___ 0.088 0.9992 
2.0 1.049 4-0.010 -0 .145  _+ 0.032 0.9999 
1.5 0.919 __0.011 0.179 _+0.038 0.9998 
1.0 0.799 4- 0.021 0.389 + 0.071 0.9990 
0.8 0.729 ___ 0.064 0.456 4- 0.217 0.9887 
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Figure 8 Reduced parallel component of the mean-squared end-to- 
end distance vs. number of segments of the model chain. Symbols as 
in Figure 6 
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Reduced parallel component of the mean-squared radius 
of gyration vs. number of segments of the model chain. Symbols as in 
Figure 6 

Mean number of polymer-polymer contacts 
Plots of  the mean  number  of  po lymer -po lymer  con- 

tacts, against the reduced temperature T*, are given in 
Figure II.  For  all the observed values of  N we can see 
that  the number  of  po lymer -po lymer  contacts  remains 
about  constant  at high temperature,  and begins to grow 
at temperatures below the 0 point. The temperature of 
the transit ion increases with increasing length of  the 
model  chain from -~1.0 for N = 1 6  to ---2.0 for N = 6 0 .  
This may  be p roof  of the collapse to the dense globular 
state 2s in such systems for N ~ ~ ,  and indicates that the 
range of  model  chain lengths is too small to calculate a 
quanti tat ive value of  the point  of  the phase transition. 

The mean segment density profile 
The mean segment  density profile in the vicinity of  the 

surface was another  quant i ty  of  interest in the presented 
work.  Figure 12 shows, as an example, plots of  the 
segment density profile obtained at temperatures T* = 4.0 
and 1.0, for tails with length N = 60. The shape of  the 
segment density profile is consistent with the data  
published by Cosgrove et al. 11'14't5 obtained experi- 
mentally by using the SANS method  and by M C  analysis 
and the data  obtained by Crox ton  18-z° for free jointed 
chains. 

On  the presented plot  one can state the decrease of  
the thickness of  the polymer  layer on the wall, and 
the increase of  the density max imum for decreasing 
temperature.  

In  Figure 13 one can see the density profiles obtained 
at temperature  T* = 4.0 for chain lengths N = 20, 40 and 
60. In the examined range of  chain lengths we cannot  
observe any qualitative changes of  the segment density 

Table 3 The results of the linear least-squares fit ofln((R 2) u/NI2) (see 
text for further details) 

T* 2v In A Corr. coeff. 

4.0 1.038 ___0.080 1.343 __+ 0.271 0.9912 
2.0 0.986 _ 0.024 1.370 + 0.081 0.9991 
1.5 0.769 _ 0.056 1.936_ 0.190 0.9921 
1.0 0.670 + 0.060 2.005 + 0.203 0.9882 
0.8 0.316 _ 0 . 0 9 4  2.844_0.094 0.8882 

2 2 Table 4 The results of the linear least-squares fit ofln((RN>±/Nl ) (see 
text for further details) 

T* 2v In A Corr. coeff. 

4.0 1.270_ 0.027 0.394__+ 0.092 0.9993 
2.0 1.238 + 0.032 0.388 + 0.109 0.9990 
1.5 1.100 __+ 0.008 0.714 _ 0.028 0.9999 
1.0 0.953 __+ 0.045 0.972_ 0.152 0.9967 
0.8 1.101 +0.212 0.308 ___0.720 0.9484 

2 2 parallel componen t s  of  (RN> and ( R c )  are independent  
of the surface and they behave like in bulk 38. The data  
obtained by us do not  permit us to perform a quanti tat ive 
calculation of  the 0 point.  

Reduced values of  the parallel componen ts  in the fiat 
regions, close to 0 condit ion,  lie near to 1.0. This is in 
good  agreement  with the data  obtained by Livne and 
Meirovich for tails wi thout  excluded volume 38. 

For  the perpendicular  componen t  of  ( R  2)  we can also 
see a flat region but  it is shifted in the direction of  lower 
temperatures  (between T * =  1.0 and T * =  1.5). 

2 2 Table 5 The results of the linear least-squares fit ofln((RG)II/NI ) (see 
text for further details) 

T* 2v In A Corr. coeff. 

4.0 1.083 _+ 0.044 - 0.615 __+ 0.148 0.9976 
2.0 1.010___ 0.015 -0.484__+ 0.053 0.9996 
1.5 0.882 __+ 0.028 -- 0.158 __+ 0.094 0.9985 
1.0 0.770_ 0.024 --0.025_ 0.080 0.9986 
0.8 0.551 +0.048 0.556_ 0.163 0.9887 
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Figure 11 Plot of the mean number of polymer-polymer contacts 
against the reduced temperature T* for chain lengths N = 16, 20, 30, 
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Figure 13 Plot of the segment density profiles obtained at temperature 
T* =4.0 for tails N = (a) 20, (b) 40 and (c) 60 
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Figure 12 Plot of the segment density profiles obtained at tempera- 
tures T* =4.0 and T*=  1.0 for tails N = 6 0  

shape. All segment density profiles procured in the 
presented work have a distinct maximum away from 
z ' ,~ (R2)  1/2. This dependence persists over the entire 
range of observed temperatures. 

CONCLUSIONS 

The statistical properties of isolated model chains con- 
strained to a tetrahedral lattice were investigated. The 
chains were anchored to a rigid wall without attractive 
force to polymer. A short-range attractive force (defined 
by equation (6)) between polymer beads was assumed. 
We pay special attention to the region around the 
0 temperature, where the chain anchored to the wall 
has properties of the chain without polymer-polymer 
interaction (in a sense of quasi-ideal scaling of chain 
dimensions). We have considered the dimensions of the 
coil and its shape as well. Values of (R2), (R2),  and 
their parallel and perpendicular components (R2)N, 
(R2>.L and (R 2> II are calculated. We have also shown 
the mean number of polymer-polymer contacts versus 
temperature and mean function of segment density for 
all modelled chains. 

In particular the following points have been found: 

(i) The 0 transition occurs for tails in poor solvent 
conditions between the reduced temperatures T*= 1.5 
and T* =2.0. 

(ii) Chains confined to the half-space are governed by 
the same characteristic power laws as free chains. 

(iii) The data obtained do not permit us to make a 
quantitative calculation of the 0 point for tails. We think 
that, to obtain the phase transition point precisely, the 
length of the studied tails should be longer by an order 
of magnitude. 

(iv) The parallel components (R2)II and (R2)lk are 
independent of the surface and they behave like in the 
free-chain case. 

(v) The mean number of polymer-polymer contacts in 
the observed systems remains constant up to the tempera- 
ture about the 0 condition and begins to grow below this 
point. 

(vi) Segment density profiles for tails over the entire 
temperature range under all conditions have the same 
shape, with a distinct maximum away from the wall, at 
the distance close t o  ( R 2 )  1/2. 

Taken together, we point out that the presented 
method may be successfully used to examine the systems 
just as depicted above, but it would be very important 
to study longer systems, which is unfortunately beyond 
our present computer resources. The presented work can 
provide the basis for a more complete description of the 
0 transition for non-interacting tails. 

REMARK AND ACKNOWLEDGEMENTS 

The INSWELL microcomputer, with Intel 80386 pro- 
cessor and floating-point co-processor, was used for the 
simulation. Typical simulation (for one chain length and 
one temperature) required 25 to 35 h CPU time. 

We are grateful to Dr A. Kolinski for his valuable 
advice and discussions. 

This work is partially supported by the Polish Academy 
of Sciences, Problem No. 3.20.63.3.1. 

REFERENCES 

1 Cherry, B. W. 'Polymer Surfaces', Cambridge University Press, 
Cambridge, 1981 

2 Napper, D. H. 'Polymeric Stabilization of Colloidal Dispersions', 
Academic Press, New York, 1983 

3 Hauser, H., Pascher, L., Pearson, R. H. and Sundell, S. Biochem. 
Biophys. Acta 1981, 650, 21 

4 Brown, M. F. and Williams, G. D. J. Biochem. Biophys. Meth. 
1985, 11, 71 

5 Madden, W. G. J. Chem. Phys. 1987, 87, 1405 
6 de Gennes, P. G. Macromolecules 1980, 13, 1069 
7 Kremer, K. J. Chem. Phys. 1985, 83, 5882 
8 Zhen-Gang Wang, Nemirovsky, A. M. and Freed, K. F. J. 

Chem. Phys. 1986, gf, 3068 

POLYMER, 1990, Vol 31, March 511 



Monte Carlo method of attached polymer." M. Milik and A. Orszagh 

9 Nemirovsky, A. M., Zhen-Gang Wang and Freed, K. F. Phys. 
Rev. (B) 1986, 34, 7886 

I0 Eichinger, B. E., Jackson, D. M. and McKay, B. D. J. Chem. 
Phys. 1986, 85, 5299 

11 Cosgrove, T. in 'Solid/Liquid Dispersions', Academic Press, 
London, 1987 

12 Eisenriegler, E., Kremer, K. and Binder, K. J. Chem. Phys. 1982, 
77, 6296 

13 Cosgrove, T., Heath, T., van Lent, B., Leermakers, F. and 
Scheutjens, L. Macromolecules 1987, 20, 1692 

14 Cosgrove, T., Heath, T. G., Ryan, K. and van Lent, B. Polym. 
Commun. 1987, 28, 64 

15 Cosgrove, T., Heath, T. G., Ryan, K. and Crowley, T. L. 
Macromolecules 1987, 20, 2879 

16 Guttman, A. J., Middlemiss, K. M., Torrie, G. M. and 
Whittington, S. G. J. Chem. Phys. 1978, 69, 5375 

17 Croxton, C. A. J. Phys. (A) 1984, 17, 2129 
18 Croxton, C. A. J. Phys. (A) 1985, 19, 987 
19 Croxton, C. A. Phys. Lett. 1985, I l iA,  453 
20 Croxton, C. A. Polym. Commun. 1987, 28, 58 
21 Croxton, C. A. Macromolecules 1988, 21,244 
22 Flory, P. J. 'Statistical Mechanics of Chain Molecules', Inter- 

science, New York, 1969 
23 Morawetz, H. 'Macromolecules in Solution', John Wiley, New 

York, 1965 

24 Kremer, K., Baumgartner, A. and Binder, K. J. Phys. (A) 1981, 
19, 2879 

25 Kolinski, A., Skolnick, J. and Yaris, R. Macromolecules 1987, 
20, 438 

26 Scheutjens, J. M. H. M. and Fleer, G. J. J. Phys. Chem. 1979, 
83, 1619 

27 Scheutjens, J. M. H. M. and Fleer, G. J. J. Phys. Chem. 1980, 
84, 178 

28 Flory, P. J. 'Principles of Polymer Chemistry', Cornell University 
Press, Ithaca, NY, 1971 

29 Tanaka, T. Macromolecules 1977, 10, 51 
30 Milik, M. and Orszagh, A. Polymer 1989, 30, 681 
31 Binder, K. (Ed.), 'Applications of the Monte Carlo Method in 

Statistical Physics', Springer-Verlag, Berlin, 1984 
32 Binder, K. (Ed.), 'Monte Carlo Methods in Statistical Physics', 

Springer-Verlag, Berlin, 1979 
33 Verdier, P. H. J. Chem. Phys. 1966, 45, 2122 
34 Verdier, P. H. J. Chem. Phys. 1973, 59, 6119 
35 Kolinski, A., Skolnick, J. and Yaris, R. J. Chem. Phys. 1986, 

84, 1922 
36 Kremer, K. and Binder, K. Preprint 
37 Kolinski, A., Skolnick, J. and Yaris, R. J. Chem. Phys, 1986, 

85, 3585 
38 Livne, S. and Meirovitch, H. J. Chem. Phys. 1988, 88, 4498 

512 POLYMER, 1990, Vol 31, March 


